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Introduction

Lepton Flavor Violation (LFV) will have a major role in
the next decade because:
• Multiple experiments probing multiple signatures

with a significant increase in sensitivity:
I µ→ eγ : MEG II
I µ→ eeē: Mu3e
I µN → eN : Mu2e, COMET, DeeMe

• Sensitive to new particles as heavy as 104 TeV (far
beyond LHC reach for direct detection)
• Sensitive to many different Beyond the Standard

Model (BSM) models
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Theoretical inputs for Mu2e(-II)

• Decay-In-Orbit (DIO) spectrum calculation for Al
target:

mµ

Γ0

dΓ
dE ≈ 1.24(3)× 10−4

Emax − E
mµ

5.023

• Precise calculations are required as DIO are a
irreducible SM background
• Need to repeat the calculations for Mu2e-II target

material
R. Szafron, and A. Czarnecki, High-energy electron from the muon decay in orbit: Radiative corrections, Phys. Lett. B 753
(2016)
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DIO spectrum for Al target
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Choice of stopping target

• Mu2e(-II) will use a 27
13Al stopping target but can

use another material if a signal is observed
• Z dependence of the conversion rate on the stopping

target material can then distinguish between
different BSM models
• 2 contributions: spin-independent (SI) (A2 rate

enhancement) and spin-dependent (SD)
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Z dependence

R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various
nuclei, Phys. Rev. D 66 (2002)
V. Cirigliano, R. Kitano, Y. Okada and P. Tuzon , On the model discriminating power of µ → e conversion in nuclei, Phys.
Rev. D 80 (2009)
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Pros and cons of other materials
Good complementary materials to 27

13Al:
1 heavy nuclei (Pb, Au)

I strong signal and good discrimination power
I short muon lifetime → increased pion background
I low sensitivity to SD contribution

2 another light nucleus 7
3Li

I weaker signal and discrimination power
I long muon lifetime

3 48
22Ti
I similar rate as Al
I spin-0 → no SD contribution
I can use 47

22Ti (spin-5/2) or 49
22Ti (spin-7/2) to measure SI

contribution
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Exotic signals

• µ− → e+:
I also violate lepton number (∆L = 2)
I requires neutrinos to be Majorana particles
I higher dimensional operators → more suppressed signal

• µ→ eX where X is a light new boson (Majoron,
axion, Z’)
I weak constraints: BR ≈ 5× 10−5
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µ→ eX electron spectrum shape

different shape of the
electron spectrum tail close
to the electron energy
Econv ≈ 105 MeV :

DIO: ∝ (E − Econv )5

exotic: ∝ (E − Econv )3
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Summary

• Mu2e and Mu2e-II will achieve remarkable
sensitivity to LFV via µ-to-e conversion in nuclei
• The theory group provides precise calculations of

SM background, guide the choice of target
materials, and explore new physics signatures that
can be probed by these experiments
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